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ABSTRACT

The need for accurate geometric and radiometric information over large areas has become increasingly important. Laser al-

timetry is one of the key technologies for obtaining this geometric information. However, there are important application areas

where the observing platform has its orbit constrained by the other instruments it is carrying, and so the spatial resolution

that can be recorded by the laser altimeter is limited. In this paper we show how information recorded by one of the other

instruments commonly carried, a high-resolution imaging camera, can be combined with the laser altimeter measurements to

give a high resolution estimate both of the surface geometry and its reflectance properties. This estimate has an accuracy

unavailable from other interpolation methods. We present the results from combining synthetic laser altimeter measurements

on a coarse grid with images generated from a surface model to re-create the surface model.

RESUME

Le besoin d'informations gdomdtriques et radiomdtriques prdcises couvrant de grandes 4tendues devient de plus en plus im-

portant. L'altimdtrie laser est une des technologies principales pour obtenir ces informations gdom4triques. Cependant, il

est des domaines d'application importants o_ la plateforme d'observation a son orblte contrainte par les autres instruments

qu'elle porte, ce qui limite la rdsolution spatiale qui peut _tre enregistr4e par I'altimi_tre. Duns cet article nous montrons

comment I'information enregistrde par un des autres instruments commun4ment embarquds, une camera photographique ,_

haute r_solution, peut _tre combinde avec les mesures de I'altim_tre laser pour donner une estimation haute rdsolution _ la

fois de la g_omdtrie de surface et de ses propri4t4s de rdflectivitd. Cette dvaluation offre une exactitude in4galde par d'autres

m4thodes d'interpotation. Nous prdsentons les r4sultats obtenus en combinant des mesures synth4tiques d'altim_tre laser sur

une grille grossi_re avec des images produites _ partir d'un module de surface pour recr4er le module de surface.

KURZFASSUNG

Pr_izise geometrische und radiometrische Informationen _ber grosse Areale ist zunehmend von Bedeutung. Die Laser Altimetrie

ist eine der Schl_sseltechnologien zur Gewinnung dieser Daten. Allerdings ist in wichtigen Anwendungsf_illen die Laser Altime-

trie Messung durch weitere Instrumente behindert und daher die r_umliche Aufl6sung eingeschr_inkt. In dieser Ver6ffentlichung

zeigen wir auf wie die yon einer hochaufl6senden Kamera (einer fast immer instalfierten Diagnostik) gewonnenen 8ilder mit

den Daten der Laser Altimetrie kombiniert werden k6nnen um eine pdizise Bestimmung der Oberfl_ichenform und ihrer Reflek-

tivit_tseigenschaften zu erm6glichen. Diese Art der Oberfl_chenbestimmung erweist sich einer Splineinterpo(ationen der Laser

Altimetriedaten Eberlegen. Wir zeigen die Ergebnisse der Oberfl_chenrekonstruktion aus der Kombination von synthetischen,

niedrig aufgel6sten Laser Altimetriedaten und Bildern.

I INTRODUCTION

The need for accurate geometric information for a variety of

problems has grown rapidly in the last decades. These needs

cover a broad field, from monitoring of environmental changes

such as the deformation rates of glaciers, to the creation of

3-dimensional digital city models, and the determination of

the shapes of asteroids and features on planets. The demands

with respect to the required accuracy are steadily increasing

(Rees 1990).

Laser altimetry systems have been able to respond to these

demands. However, for many applications, only coarse resolu-

tion sampling is available. This is especially true for planetary

and small body observations, where the sampling of the sur-

face is constrained by the orbit of the sensor, and this orbit

is often determined by the other instruments carried by the

spacecraft.

These other instruments usually include a high-resolution op-

tical imager. These images have been previously used to in-

fer a surface reconstruction, solving this inverse problem using

Bayesian probability theory (Smelyanskiy 2000, Morris 2001).

The accuracy of the reconstruction of the 3-dimensional sur-

face depends on the geometric information content of the im-

ages and on additional prior knowledge. Often images from

mapping orbits do not contain much geometric information

as the baseline is very small compared to the distance to the

surface.

In this paper we show that a dense surface geometry estimate

can be made by combining the information from a coarse but

highly accurate grid of height field points from Laser altimetry

measurements and the limited geometrical information from

a set of optical images. The resulting surface estimate (both

geometry and albedo) has a precision unavailable from other

interpolation methods. At the same time far fewer images

are needed for a surface reconstruction than without the data



from the laser altimetry measurements.

The calculation is a two step process: Using the images and

a spline interpolation of the laser altimetry data, an approxi-

mate albedo field of the surface is inferred. This albedo field

and the spline interpolated surface are the starting points for

the Bayesian surface reconstruction. The varying accuracy

of the height field points is taken into account by assigning

different uncertainty values to the individual points. The un-

certainty of the laser altimetry measured points is very much

lower compared with the interpolated values. This approach

also offers an easy way to combine measurements with differ-

ent accuracy. The height field points between the grid points

of the laser altimetry measurements are updated by the ad-

ditional geometrical constraints of the optical images. We

present results of the inference of surface models from simu-

lated height field grids and aerial photographs. The influence

of different number of images and varying grid resolution is

shown.

2 THEORY

The objective here is to infer a surface model using the avail-

able data, in this case, laser altimeter measurements and op-

tical images. Bayesian inference has, for some time now, been

the method of choice for many inference problems, enabling

accurate estimation of parameters of interest from noisy and

incomplete data (Bernardo i994). It also provides a con-

sistent framework for the incorporation of multiple, distinct,

data sets into the inference process. The general approach is

illustrated in figure 1. The figure shows that synthetic obser-

vations of the model are made using a computer simulation

of the observation process, and that these are compared with

the actual observations. The error between the actual and

the simulated observations is used to adjust the parameters

of the model, to minimize the errors. Bayes theorem tells us

directly how much weight to assign to the two sources of er-

rors, those coming from the image measurements and those

coming from the laser altimeter measurements.

The surface model we use here is a triangulated mesh. At

each vertex of the mesh we store the height and the albedo.

As discussed above, to be able to infer the surface heights

and albedos, we must first be able to simulate the data that

would be recorded from the surface.

Generating images from the surface model is the area of com-

puter graphics known as rendering (Foley 1990). It is impor-

tant to note, however, that much recent work in computer

graphics is unsuitable for our purpose, as it works in image

space, where the fundamental unit is the image pixel, and any

given pixel is coloured by light from one and only one surface

element. This results in artefacts due to the relative sizes of

the projections of the surface elements onto the image plane

and their discretization into pixels. These artefacts are par-

ticularly noticeable along the edges of the surface elements

(aliasing). For this work we require the renderer to operate

in object space, and below we will briefly describe such a sys-

tem. We also note that an object-space renderer can also

compute the derivatives of the pixel values with respect to

the surface model parameters. This is crucial in enabling ef-

ficient estimation of the surface model parameters, and will

be described in more detail below.

We are also required to produce synthetic laser altimeter mea-

surements. We make the approximation that the laser altime-

ter makes point measurements of the surface, and so produc-

ing these synthetic observations is straightforward. We also

assume that the error in these measurements are known.

3 A BAYESIAN FRAMEWORK

In this paper the surface geometry is represented by a trian-

gular mesh and the surface reflectance properties (albedos)

are associated with the vertices of the triangular mesh. We

will consider the case of Lambertian surfaces. We will also

assume that the camera parameters (position and orientation,

and internal calibration) and the parameters of the lighting

are known. It is possible to estimate these parameters in a

similar Bayesian framework, but it is beyond the scope of this

paper (Morris 2001, Smelyanskiy 2001).

Thus we represent the surface modet by the pair of vectors

[2 fT]. The components of these vectors correspond to the

height and albedo values defined on a regular grid of points

[E_]={(zi,pi), i=t(qYc+py)} q,p=0,1,... (1)

where _ is the elementary grid length, _, _ are an orthonormal

pair of unit vectors in the (x,y) plane and i indexes the posi-

tion in the grid. The pair of vectors of heights and albedos

represents a full vector for the surface model

u = [x_]. (2)

To estimate the values of E, _ from the laser altimeter and

image data, we apply Bayes theorem which gives

p(_,SIL, II ...IF) cx p(L, I1 ... IFIE,/Y) p(E,_), (3)

where L is the laser altimeter data I] (f = 1,... ,F) is the

image data. This states that the posterior distribution of the

heights and the albedos is proportional to the likelihood -

the probability of observing the data given the heights and

albedos - multiplied by the prior distribution on the heights

and albedos,

Given the surface description, the images and the laser altime-

ter measurements are conditionally independent, and equa-

tion 3 can be written as

p(E, filL, I_ ... IF) oc p(LIE, :)p(I1... IF IE, :)p(E, 5),

where we now have two independent likelihood terms, one for

each data stream.

The prior distribution is assumed to be Gaussian

p(E,_)ocexp(--lu_,-luT), (4)

= o 0/o_ '

where the vector of the surface model parameters u is de-

fined in (2). The inverse covariance matrix is constructed to

enforce a smoothing constraint on local variations of heights

and albedos. We penalize the integral over the surface of the

curvature factor c(x, y) 2 2 2= z== + z_ + 2z=_, and similarly

for albedos. The two hyperparameters ah and crp in equa-

tion (4) control the expected values of the surface-averaged

curvatures for heights and albedos.

This prior is placed directly over the height variables, z, but

albedos are only defined over the range [0- 1]. To avoid this,
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Figure 1: Outline of the Bayesian approach to surface reconstruction from images and laser altimeter measurements

we use transformed albedos P'i in the Gaussian (4), where p_

are defined by:

p;=log(pl/(1-pl)), u --+ [Ey]. (5)

In the vector of model parameters u values of iTare replaced

by values of _.

For both the likelihoods we make the usual assumption that

the differences between the observed data and the data syn-

thesized from the model have a zero mean, Gaussian distri-

bution. So for the laser altimeter measurements we have

( )p(LtZ, p-") o_ exp _-]t(Lt - LI(F"P))2
_ (6)

where the summation is over the individual measurement

points 151, and Lz(_,p-_ denotes the laser altimeter measure-

ments synthesized from the model. The parameter _ is the

variance of the laser altimeter measurement system.

We also assume that the images/i comprising the data are

conditionally independent, giving

p(I1 ...IrlE,_)ocexpl-_LP(t'fp--I-'fP(Z'P))2 )2o.,

where ./=fp(_",_E) denotes the pixel intensities in the image f

2 is the noise variance and thesynthesized from the model, (r e

summation is over the pixels (p) and over all images (f) used

for the inference.

Consider the negative log-posterior.

L:(s,fi) o, oq

+ _,(L_ - L(s,#)) _

+ x 2 -1 xv, (7)

where x = u - uo is a deviation from a current estimate uo.

L: is a nonlinear function of 2T,/7 and the MAP estimate is

that value of _,ffwhich minimizes f(E,,_),

The crux of the problem is thus how to minimize L:. We apply

a gradient method, using an initialization based on a spline

interpolation of the laser altimeter measurements.

Making the assumption that the laser altimeter makes point

measurements of one of the vertices of the mesh, equation 6

can be written as

p(L[S,p-') oc exp (-I/2(I- 10),!_z--'(I- I0)_)

where Io is the vector of actual laser altimeter observations,

and ! are the corresponding entries taken from the E vector.

The inverse covariance matrix _-1 is a diagonal matrix with

1/E_ on the leading diagonal.

The term for the image measurements is more complex, as

_f(z_T,p-_ is the rendering process. To make progress with min-

imizing _(zT, p_) we linearize J_(_'_/_) about an initial estimate,

_o,Yo

{ Ois, O;'/p }i(_,/Y)=I(zTo,/Yo)+Dx, D_= Ozl ' Op; (8)

where D is the matrix of derivatives evaluated at zo,po. Then

the minimization of L(Z, p-') is replaced by minimization of the

quadratic form:

£, 1
= _xAx-bx, x=u-uo,

DD T

,4 = _-1 + ,_--F + _;-_'

b = (I - _f(zT°"6°)) O
o_ (9)

where _,_-1 is now a large square matrix (of dimension

length(_ + fength(p_), where the diagonal elements corre-

sponding to the vertices for which there are laser altimeter

measurements take values 1/o'/2 and all other entries are zero.

The entries of uo corresponding to the laser attimeter mea-

surements are set to the observed values, and the remaining

height values are initialized using a spline interpolation. This

interpolation and the albedo initialization will be described

below.

In equation 9 _. is the Hessian matrix of the quadratic form

and vector b is the gradient of the likelihood _ computed at

the current estimate. We search for the minimum in x using

a conjugate-gradient method (Press 1992).

Thus the most difficult patt of finding the MAP is the re-

quirement to render the image and compute the derivatives

for any values of the surface model parameters. We discuss

this computation in some detail in the next sections. Here

it is sufficient to note that while forming _r using only object

space computation (see section 4) is computationally expen-

sive, we can compute D at the same time for tittle additional

computation. Also the derivative matrix is sparse with the

number of nonzero entries a few times the number of model

parameters. This makes the process described above a prac-

tical one.

The log-posterior is potentially multi-modal, and so it is im-

portant to begin the optimization from a good initialization.
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Figure 2: Geometry of the triangular facet, illumination direc-

tion and viewing direction. _.8 is the vector to the illumination

source; _._ is the viewing direction.

In order to do this, the high resolution surface estimation

proceeds as follows.

2,

3.

4°

Use a spline interpolation of the laser altimeter mea-

surements to produce an initial height field estimate at

the desired high resolution.

Also produce the matrix _,,7 z, with zeros everywhere

except those diagonal entries corresponding to the

points of the high resolution surface grid that are mea-

sured by the laser altimeter. These values are 1/a_.

Initialise all the albedos to 0.5.

Render the surface generated in step 1 and compute

the derivative matrices D (one for each image). Set

to zero all the derivatives with respect to the surface

heights. This fixes the heights at their current values

in the optimization step (below), so that only the sur-

face albedo values are inferred.

Starting from the surface from step i, and using the

derivative matrices calculated above, use the conjugate

gradient algorithm to minimize the linearization of the

log-posterior in equation 9. This produces a good ini-

tialization for the final optimization.

Render the surface generated in step 2 and compute

the derivative matrices D.

Starting from the surface in step 2, use the conjugate

gradient algorithm to minimize the linearization of the

log-posterior.

Repeat step 3 until convergence.

The minimum found is the final surface estimate, which

combines the information from the laser altimeter mea-

surements and the visible images.

4 FORMATION OF THE IMAGE AND THE

DERIVATIVE MATRIX.

The task of forming an image, ], given a surface descrip-

tion, 3",(_, and camera and illumination parameters is the

area of computer graphics known as rendering (Foley 1990).

Most current rendering technology is focused on producing

images which are visually appealing, and producing them very

quickly. As discussed in the introduction, this results in the

use of image-space algorithms, with the fundamental assump-

tion that each triangle making up the surface, when projected

onto the image plane, is much larger than a pixel. This makes

reasonable the assumption that any given pixel receives light

from only one triangle, but does produce images with artifacts

at the triangle edges. Standard rendering also produces inac-

curate images if the triangles project into areas much smaller

than a pixel on the image plane, as the pixel will then be

colored with a value coming from just one of the triangles.

Clearly this approach is not suitable for high-resolution 3D

surface reconstruction from multiple images. The triangles

in a high-resolution surface may project onto an area much

smaller than a single pixel in the image plane (sub-pixel res-

olution). Therefore, as discussed in the introduction, for

our system we implemented a renderer for triangular meshes

which performs all computation in object space. At present

we neglect the blurring effect due to diffraction and due to

the role of pixel boundaries in the CCD array. Then the light

from a triangle as it is projected into a pixel contributes to

the brightness of the pixel with a weight factor proportional

to the fraction of the area of the triangle which projects into

that pixel. This produces anti-aliased images and allows an

image of any resolution to be produced from a mesh of ar-

bitrary density, as required when the system performing the

surface inference may have no control over the image data

gathering.

Our renderer computes brightness ]p of a pixel p in the image

as a sum of contributions from individual surface triangles

A whose projections into the image plane overlap, at least

partially, with the pixel p.

A

Here _A is a radiation flux reflected from the triangular facet

/k and received by the camera, and fPA is the fraction of the

flux that falls onto a given pixel p in the image plane. In the

case of Lambertian surfaces and a single spectral band ffPz_ is

given by the expression

(I)_ = pE(cd) cosc_" cos" 0A£_, (11)

E(cd) = A(Z' coscd +Z_).

Af_ = S/d 2.

Here p is an average albedo of the triangular facet. Orienta-

tion angles c__ and c__ are defined in figure 2. E(cx ") is the

total radiation flux incident on the triangular facet with area

,,4. This flux is modeled as a sum of two terms. The first

term corresponds to direct radiation with intensity Z s from

the light source at infinity (commonly the sun). The second

term corresponds to ambient light with intensity Z a. The pa-

rameter 0 in equation. (11) is the angle between the camera

axis and the viewing direction (the vector from the surface to

the camera); The exponent _ is the lens falloff factor. AQ

in (11) is the spatial angle subtended by the camera which is

determined by the area of the lens S and the distance d from

the centroid of the triangular facet to the camera.

We identify the triangular facet /k by the set of 3 indices

(io,i1,|2) from the vector of heights (1) that determines the

vertices of the triangle in a counterclockwise direction (see

figure 2). In the r.h.s of equation (11) we have omitted

for brevity those indices from all the quantities associated

with individual triangles. The average value of albedo for the
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Figure 3: The intersection of the projection of a triangular

surface element (in, 11, i2) onto the pixel plane with the pixel

boundaries. Bold lines corresponds to the edges of the poly-

gon resulting from the intersection. Dashed lines correspond

to the new positions of the triangle edges when point Pin is

displaced by 6P

triangle in (II) is computed based on the components of the

albedo vector p corresponding to the triangle indices

I

p_ -- Plo,il,i_ = _(plo +pl; +pi2). (12)

We note that using average albedo (12) in the expression for

_z_ is an approximation which is justified when the albedo

values vary smoothly between the neighboring vertices of a

grid.

The area A of the triangle and the orientation angles in (11)

can be calculated in terms of the vertices of the triangle Pi

(see figure 2) as follows:

fl._=cosa _, fl._?=cosa_, (13)

1_1 : rio,| 1 X Vil,i 2

2,A , vij = Pj - Pi

Here fi is a unit normal to the triangular facet and vectors of

the edges of the triangle aid are shown in figure 2.

We use a standard pinhole camera model with no distortion in

which coordinates of a 3D world point P = (x_ y, z) are first

rotated with the rotation matrix _1_and then translated by the

vector T into camera coordinates, yielding Pc = (xc, yc, zc)

Pc --- Re + T (14)

(R and T are expressed in terms of the camera registration

parameters (Hartley 2000). We do not give them explicitly

here). After the 3D transformation given in (14), point Pc

in the camera coordinate system is transformed using a per-

spective projection into the 2D image point :P = (_, :_) using

a focal length f and aspect ratio a.

We use 2D image projections of the triangular vertices Pi to

compute the area fraction factors f_ for the surface triangles

(cf. Eq. (i0))

f_ = AP°IYg°n. (16)
A_

Figure 4: The initial synthetic surface model (Duckwater,

NV). (Note the exaggerated vertical scale.)

Here .Ziz_ is the area of the projected triangle on the image

plane and fflpolygon is the area of the polygon resulting from

the intersection of the projected triangle and the pixel p (see

figure 3).

4.1 Computation of the derivative matrix.

The inference of the surface model parameters depends on

the ability to compute the derivatives of the modeled obser-

vations I with respect to the model parameters. According

to equation (10), the intensity _fp of a pixel p depends on the

subset of the surface parameters, (heights and albedos), that

are associated with the triangles whose projections overlap

the pixel area.

The derivatives .rp with respect to logarithmically transformed

albedo values are easily derived from equations (5), (10) and

(11).

In our object-space renderer, which is based on pixel-triangle

geometrical intersection in the image plane, the pixel inten-

sity derivatives with respect to the surface heights have two

distinct contributions

a_ = I_ _ + _ a_, ? (it)

Variation of the surface height zl gives rise to variations in

the normals of the triangles associated with this height (in a

general triangular mesh, on average 6 triangles are associated

with each height) and this produces the derivatives of the to-

tal radiation flux _A to the camera from those triangles. This

is the first term in equation (17). Also, height variation gives

rise to the displacement of the corresponding point which is

the projection of this vertex on the image plane. This results

in changes to the areas of the triangles and polygons with

edges containing this point (see figure 3). This produces the

derivatives of the fractions .f_, the second term in equation

17. Details of these derivatives can be found in (Smelyanskiy

2000, Morris 2001, Smelyanskiy 2001).

5 RESULTS

Figure 4 shows the synthetic surface that we will use to

demonstrate our methodology. The topography is taken from

the USGS DEM of Duckwater, Nevada. A LANDSAT-TM



camera (75,150, 2000)

image 1 look at (150,150, O)

view up (0, 1, O)

camera (225_ 150_ 2000)

image 2 look at (150,150, O)

view up (0, 1, O)

Table 1: Camera parameters used to generate the images in

figure 5

S5

5S

,5
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1 2

Figure 6: Grid from the 9 x 9 simulated laser altimeter mea-

surements.

Figure 5: Images of the synthetic surface

image was co-registered with the DEM, and the values of

one band were used in place of the true albedos. This results

in the surface shown. One unit is approximately 180 meters.

Figure 5 shows two images rendered from the surface, and

table 1 gives the positions and orientations of the (synthetic)

cameras. The cameras were positioned to approximate satel-

lite observations. The two images look very realistic. Note

that the images appear very similar due to the proximity of

the two camera positions. There is limited geometric infor-

mation available from the images alone.

Figure 6 shows a surface from a grid of 9 x 9 points extracted

from the surface in figure 4. The major terrain features have

all been sampled, but clearly it is a very poor representation of

the surface. This is taken as the laser altimeter observations

of the surface.

Using the images and the 9 x 9 grid, we will now go through

the surface estimation procedure that was detailed above.

Figure 7 shows the result of using the standard spline inter-

polation to expand the 9 x 9 grid to the full resolution of the

surface. The result is a smooth surface showing the major

features, but note that it contains no more information than

the coarse surface.

Keeping the heights fixed at this surface, we then use the im-

ages to infer initial values for the albedos. The result is shown

in figure 8. Note that this is not simply the back-projection

of the of the images onto the surface, The information in

both images has been optimally combined to give the albedo

estimates. This surface is now a passable approximation to

the original surface, as it has high resolution albedo infor-

mation providing rich visual detail, but clearly it contains no

topographic detail.

Figure 9 shows the final inferred surface. This is much im-

proved over the surface in figure 8. It shows that much of

the detail of the topography has been extracted from the data

and incorporated into the model. The error surfaces show in

figures 10 and 11 show clearly the improvement in the sur-

face estimate. These error surfaces show both the height

error and the albedo error as a shaded surface - the topog-

raphy shows the height error, and the colour of the surface

50 _ __. 250 ' 300

0 _ _150 200

0 5O

Figure 7: Spline interpolation of the synthetic laser altimeter

measurements.

shows the albedo error. The rms errors for the interpolated

surface are 0.64 (per vertex) for the heights and 2.6 x 10 -s

for the albedos. For the final infered surface the errors are

0.01 for the heights and 1.3 x 10 -5 for the albedos. Note

that the albedo values from the initialization are already quite

good (as can be seen on figure 8), however the inference pro-

cess produces a topography which is very significantly more

accurate.

O CONCLUSIONS AND FUTURE EXTENSIONS

We have presented the theory and practice of using Bayesian

methodology to combine the information in laser altimeter

measurements and visible images into a single, high resolution

surface model. We have shown on synthetic data that the two

data sets can be combined into a single high resolution model

that is more detailed than could be provided by either data

stream alone.

Current work is proceeding towards applying the demonstra-

tion system to real data, including NASA mission data. Work

in this area is devoted to sensor modeling (producing the syn-

thetic images and derivative matrices for the actual imaging

sensor, rather than an idealization of it), estimation of the

camera positions to sub-plxel accuracy, better control of the

smoothness prior on the surface, and better initialization of

the optimization procedure.
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Figure 8: Interpolated surface with inferred albedos.
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Figure 9: Final inferred surface using the Bayesian approach

to combining the laser altimeter and visible images
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Figure 11: Error surface for the inferred surface
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Figure 10: Error surface for the interpolated surface


